
Automatically Distributing Eulerian and Hybrid Fluid Simulations
in the Cloud

OMID MASHAYEKHI, CHINMAYEE SHAH, HANG QU, ANDREW LIM, and PHILIP LEVIS,
Stanford University

(a) 1523 cells, without Nimbus: 335 minutes (b) 2563 cells, with Nimbus: 268 minutes

Fig. 1. Particle level set water simulations with and without Nimbus. The left simulation has 1523 cells, runs on a single core and takes 335 minutes to simulate
30 frames. The right simulation uses Nimbus to automatically distribute this single-core simulation over 8 nodes (64 cores) in Amazon’s EC2, simulating faster
and with greater detail: 30 frames of a 2563 cell simulation take 268 minutes. Without Nimbus the 2563 cell simulation takes more than two days. Running the
1523 simulation in Nimbus takes just over one hour (68 minutes).

Distributing a simulation across many machines can drastically speed up
computations and increase detail. The computing cloud provides tremendous
computing resources, but weak service guarantees force programs to manage
significant system complexity: nodes, networks, and storage occasionally
perform poorly or fail.

We describe Nimbus, a system that automatically distributes grid-based
and hybrid simulations across cloud computing nodes. The main simulation
loop is sequential code and launches distributed computations across many
cores. The simulation on each core runs as if it is stand-alone: Nimbus
automatically stitches these simulations into a single, larger one. To do
this efficiently, Nimbus introduces a four-layer data model that translates
between the contiguous, geometric objects used by simulation libraries
and the replicated, fine-grained objects managed by its underlying cloud
computing runtime.

Using PhysBAM particle level set fluid simulations, we demonstrate that
Nimbus can run higher detail simulations faster, distribute simulations on
up to 512 cores, and run enormous simulations (10243 cells). Nimbus au-
tomatically manages these distributed simulations, balancing load across
nodes and recovering from failures. Implementations of PhysBAM water
and smoke simulations as well as an open source heat-diffusion simulation
show that Nimbus is general and can support complex simulations.

Nimbus can be downloaded from https://nimbus.stanford.edu.

CCS Concepts: •Computingmethodologies→Distributed computing
methodologies; Distributed simulation; Computer graphics;

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2018 Copyright held by the owner/author(s).
0730-0301/2018/1-ART1
https://doi.org/10.1145/3173551

Additional Key Words and Phrases: Cloud computing, Eulerian and hybrid
graphical simulations, load balancing, fault recovery.

ACM Reference format:
OmidMashayekhi, Chinmayee Shah, HangQu, Andrew Lim, and Philip Levis.
2018. Automatically Distributing Eulerian and Hybrid Fluid Simulations in
the Cloud. ACM Trans. Graph. 1, 1, Article 1 (January 2018), 14 pages.
https://doi.org/10.1145/3173551

1 INTRODUCTION
Fluid simulation is a cornerstone of modern animation and special
effects. These simulations are computationally intensive and so
trade off between simulation detail and execution time. Research
results often run for several days or weeks, but the turn-around
times of production schedules require using lower resolutions.
On-demand cloud computing has made high-performance com-

puting clusters immediately available to anyone at very low cost.
These ultra-cheap, highly available computing resources are re-
sponsible for the success of real-time “big data” analytics frame-
works [Murray et al. 2013; Zaharia et al. 2012] as well as a renais-
sance in artificial intelligence through deep learning [Dean et al.
2012; Lee et al. 2009].
Despite its benefits, however, cloud computing has been mostly

untapped by simulations. Writing high-performance, distributed
programs for the cloud is extremely difficult. Cloud computing pro-
vides low price points by giving weak service guarantees: nodes,
networks, and storage can and do fail quite often [Vishwanath and
Nagappan 2010]. More perniciously, a small fraction of nodes, called
stragglers, perform poorly [Ananthanarayanan et al. 2010], slowing
an application to the speed of the slowest core. To perform well in

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:2 • O. Mashayekhi et. al.

the cloud, an application must interleave computation with commu-
nication, recover from failures, and dynamically move work away
from slow nodes. For one-off simulations, the up-front engineer-
ing costs to distribute in the cloud outweigh the benefits. At the
same time, refactoring an existing simulation library is complex and
difficult, requiring deep expertise in both distributed systems and
simulation methods.
Existing software frameworks provide little help in writing sim-

ulations for the cloud. Cloud computing frameworks are designed
around application data abstractions such as key-value stores [Mur-
ray et al. 2013; Zaharia et al. 2012] or huge graphs [Gonzalez et al.
2012; Malewicz et al. 2010], which do not handle the geometric
stencils and solvers used by fluid simulations. At the same time,
high performance computing (HPC) frameworks leave load balanc-
ing and fault tolerance to the programmer (e.g. Charm++ [Kale
and Krishnan 1993]), require rewriting simulation kernels to a re-
stricted data model (e.g. X10 [Charles et al. 2005]), or do both (e.g.
Legion [Bauer 2014]). Higher level domain specific languages such
as Regent [Slaughter et al. 2015], Simit [Kjolstad et al. 2016], or
Ebb [Bernstein et al. 2016] require rewriting entire simulations from
scratch and do not provide the load balancing and fault-tolerance
that the cloud requires.
This paper presents Nimbus, a system that takes an existing

grid-based or hybrid (e.g., particle level set) simulation library and
automatically distributes it across manymulti-core cloud computing
nodes. The core of Nimbus resembles a cloud computing framework:
a driver program written as a simple sequential program sends
execution tasks to a centralized controller node that dispatches them
to many worker nodes. Nimbus’s key contribution lies in how it
manages data across compute cores so they each seemingly run a
stand-alone simulation. Nimbus automatically updates state shared
between these sub-simulations (e.g., ghost cells), stitching them
together into a single larger one. It achieves this by using a novel, 4
layer data model:

(1) In the top layer, a sequential driver program executes simu-
lation functions over geometric data objects, consisting of a
simulation variable over a bounding box.

(2) To efficiently handle ghost regions and other shared subre-
gions, the second layer disjointly subdivides the domain into
logical objects. Logical objects present an abstraction of a
large, shared memory, allowing Nimbus to easily analyze
parallelism and data dependencies independently of how the
simulation is distributed.

(3) Each logical object can have multiple physical instances, re-
siding on one or more nodes. The logical/physical separation
allows the controller to abstract away distribution, load bal-
ancing, and fault tolerance from the driver program.

(4) Finally, application objects are in the format and layout that
the simulation library expects. Application objects are typ-
ically composed of many physical objects, as they include
central as well as ghost regions. Nimbus automatically up-
dates application objects locally or over the network to stitch
together many seemingly independent simulations.

To support an existing simulation library, a library developer
writes a small number of adapters that translate between library
calls and Nimbus’s APIs.
Nimbus borrows many ideas from previous cloud and HPC sys-

tems, such as a central controller and the distinction between phys-
ical and logical objects. Unlike all prior approaches, Nimbus is able
to automatically distribute serial simulations using their existing
kernels. Furthermore, running graphical simulations in a cloud com-
puting setting exposes new performance bottlenecks that big data
applications have yet to encounter. Nimbus therefore introduces
new optimization techniques that are crucial for performance, such
as caching translations between physical and application objects as
well as control plane messages. In summary, this paper makes the
following contributions:
• A four-layer data model that allows a cloud computing run-
time to manage distributed geometric data objects that have
overlapping regions such as ghost cells.
• A system architecture that uses the four-layer data model
to automatically distribute a simulation across many cores,
stitching together many smaller simulations into a single,
larger one.
• An evaluation of an implementation of the architecture, called
Nimbus, quantifying the overheads and scalability of the un-
derlying cloud computing runtime as well as the importance
of data caching enabled by using the four-layer data model.
• Demonstrations of PhysBAM [Dubey et al. 2011] particle level
set water and smoke simulations as well as a 3D heat diffusion
simulation using a Jacobi solver that Nimbus automatically
distributes to run on 1-512 cores.

Our evaluation shows that Nimbus runs more detailed simula-
tions faster. By distributing a PhysBAM particle level set water
simulation to run on 64 cores, Nimbus can run a 2563 simulation
faster than a single core can run a 1523 simulation. Alternatively,
Nimbus can lower the 1523 simulation time from 4 hours to 1 hour.
These improvements come without any modifications to PhysBAM
libraries, demonstrating the benefits of cleanly separating distribu-
tion from simulation methods through Nimbus’s system and data
model. Furthermore, Nimbus is general; in addition to PhysBAM
water and smoke simulations, we demonstrate a 3D heat diffusion
simulation [Kamil 2017] distributed by Nimbus.

2 RELATED WORK
This work builds upon and borrows ideas from a diverse body of
prior work including fluid simulation methods, parallel computing,
DSLs, and cloud computing.

2.1 Fluid Simulations
There are several common techniques used in fluid simulations.
Some, such as smoothed-particle hydrodynamics (SPH) [Desbrun
and Gascuel 1996], are purely particle-based (Lagrangian). Others
are purely grid-based (Eulerian) [Stam 1999]. Most modern methods,
however, use a combination of particles and grids. The particle-in-
cell (PIC) method uses a grid for pressure and viscosity updates
but particles for advection [Harlow 1962]. The fluid implicit par-
ticle method (FLIP) adds energy and momentum to particles to

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Automatically Distributing Eulerian and Hybrid Fluid Simulations in the Cloud • 1:3

reduce dissipation [Zhu and Bridson 2005]. The affine particle-in-
cell (APIC) method augments particles with an affine description of
velocity [Jiang et al. 2015]. Particle level set methods use a thin band
of particles at the fluid interface to improve accuracy. [Enright et al.
2002a; Losasso et al. 2004], and more recent work has explored how
to incorporate chimera grids [English et al. 2013] and compressible
bubbles [Patkar et al. 2013]. PhysBAM is an open-source simulation
library [Dubey et al. 2011] that supports several fluid simulations
using the particle level set method. Nimbus is designed to support
simulations with an underlying Eulerian structure including parti-
cle level set methods, FLIP, and APIC; it is a poor match for purely
Lagrangian or mesh-based simulations.
A data-driven approach to enable real time fluid dynamics on

mobile devices precomputes a large number of state transitions
and blends different states into a best-effort simulation [Stanton
et al. 2014]. Some productions stitch together several coarse and
finer simulations, manually fixing the mismatches at simulation
boundaries [Reisch et al. 2016; White 2012]. These systems could
use Nimbus to generate precomputed states or individual simulation
frames.

2.2 Parallel Computing
MPI [Snir 1998] is a parallel runtime used in high performance
computing. Extensive developer effort is required for a correct and
scalable MPI implementation, e.g. synchronizing between processes
by exchanging messages, and mapping computation workload to
processes evenly. Charm++ [Kale and Krishnan 1993] resembles
MPI, but decomposes processes into smaller object-oriented units
called chares. Other parallel runtime such as Legion [Bauer 2014], Se-
quioa [Fatahalian et al. 2006] and Uintah [Germain et al. 2000] allow
developers to describe computations as a sequence of tasks, similar
to Nimbus, but requires developers to rewrite existing libraries to
use their data models. Legion, for example, forces programs to store
data in tables and partition those tables along rows or columns;
this abstraction works well for Eulerian simulations, but performs
poorly for particle and hybrid simulations because adjacent rows
in a table can move and become geometrically distant, resulting in
highly fragmented partitioning. Sequoia requires programmers to
use static arrays, making it difficult to express particle and hybrid
simulations. Legion and Sequoia take control of the data model but
allow a program to decide how to distribute itself; Nimbus takes
the opposite approach, keeping the data model under the control
of an existing simulation library and automatically handling distri-
bution. ZPL [Deitz et al. 2004] is an array programming language
that provides abstractions to express data parallel computations,
and mappings from data to processor sets, and generates MPI or
SHMEM code, but requires application code to be rewritten. The
array programming model also makes it difficult to express particle
or hybrid algorithms.
Task queues with fork-join and work-stealing approaches have

been used to parallelize simulation methods for fluid, face and cloth
simulations [Hughes et al. 2007] over multi-core processors. Task
queues and work stealing are useful to run parallel tasks over mul-
tiple cores on a single node with shared memory, but do not scale
to multiple nodes.

High performance computing has a rich literature on load bal-
ancing. Static balancing [Catalyurek et al. 2007; Karypis and Kumar
1996] is common for computations on graphs and finite element
meshes where each element requires the same number of computa-
tional cycles; these approaches pre-compute the optimal partitioning
to balance load. Work stealing [Dinan et al. 2009; Lifflander et al.
2012] algorithms have idle nodes pull computation work from few
neighboring nodes, but balance load suboptimally because each
node has only partial knowledge. Load balancing algorithms based
on global load distribution knowledge tend to scale poorly [Ni and
Hwang 1985]. Hierarchical algorithms [Jeannot et al. 2013; Lifflan-
der et al. 2012; Zheng et al. 2011] scale by decomposing the domain
into multiple layers, each of which is tractable to balance. Nimbus
takes a centralized approach with a global view of the computa-
tion, using a caching layer to avoid centralization from becoming a
bottleneck.

2.3 Rendering and Domain Specific Languages
Languages such as OpenGL and RenderMan are widely researched
and used for rendering in the graphics community [Hanrahan and
Lawson 1990; The Khronos Group 2017b]. Systems such as Render-
Man, Chromium and FlowVR Render support rendering over the
network, using multiple nodes [Allard and Raffin 2005; Humphreys
et al. 2002]. Rendering a large number of frames exploits parallelism,
such as temporal parallelism across frames, object parallelism, and
even techniques such as sort-first and sort-last, making it a highly
parallelizable problem with few dependencies. Languages such as
OpenCL and CUDA have made it possible to parallelize computa-
tions over a node using thousands of threads [Corporation 2017;
Goodnight 2007; Luebke 2008; The Khronos Group 2017a]. GPUs
make it possible to exploit a large amount of data parallelism, but
on a single node.
Halide, a domain specific language (DSL) for writing image pro-

cessing pipelines, decouples the algorithm from the computation
schedule [Ragan-Kelley et al. 2013]. It uses MPI to distribute stencil
computations over multiple nodes [Denniston et al. 2016]. DSLs
such as Liszt [DeVito et al. 2011], Ebb [Bernstein et al. 2016] and
Simit [Kjolstad et al. 2016] let programmers express simulation
algorithms at a higher level of abstraction suited to the applica-
tion domain. A programmer writes a sequence of kernels, and the
runtime runs these kernels in parallel. These DSLs can run competi-
tively with, or faster than, hand-tuned C with drastically simpler
programs. Nimbus is a distributed system that these DSLs can tar-
get to automatically distribute and load-balance simulations across
many nodes. Regent [Slaughter et al. 2015] exposes logical regions
from Legion [Bauer 2014], and automatically generates low-level
Legion code. DSLs require that existing libraries be rewritten using
a new data model, or a new language. With Nimbus, programmers
can reuse existing libraries.

2.4 Cloud Computing and Fault Tolerance
Most cloud computing systems such asHadoop [Dittrich andQuiané-
Ruiz 2012] and Spark [Zaharia et al. 2012] are built upon running
map and reduce operations over key-value pairs. These systems
assume that all locality is key based: all of the data for a key resides

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:4 • O. Mashayekhi et. al.

BA C D

Ghost Regions

21 3 4 5 6

Geometric
(driver)

Logical

Application
(library)

Physical

Read
Write

Write
Read

Data Type

Node 1 Node 2

Launcher

Controller

Translator

Fig. 2. The Nimbus data model has four abstractions: geometric, logical,
physical, and application. This example shows a 1D advection stencil split
into two partitions on two different nodes. The geometric view sees the
complete simulation domain and applies the stencil to the two partitions.
This defines 4 logical objects, which map to 6 physical objects on the two
nodes. Nimbus assembles these disjoint physical objects into contiguous
application objects before invoking simulation library functions.

on the same node, but data for different keys has no locality. Corre-
spondingly, these systems support when a task either depends on a
single partition (a “narrow” dependency) or all partitions (a “wide”
dependency) of data, but nothing in-between. This abstraction is
poorly suited to the structure and locality of simulation data such
as particles and grids. Nimbus extends this task based approach to
support geometric dependencies with data locality.
Cloud nodes can have highly variable performance, due to net-

work cross-traffic, misconfiguration, or hardware faults. This causes
a small fraction of nodes to be “stragglers”. Cloud systems ad-
dress stragglers and failures by proactively replicating computa-
tions [Ananthanarayanan et al. 2013; Dean and Ghemawat 2008],
which works well for disk bound computations but is prohibitively
expensive for CPU-bound ones. Spark tracks lineage for each data
set, recomputing and regenerating them if needed.

Naiad uses a timely dataflow to track dependencies, and supports
richer programs such as streaming data analysis, machine learning
and graph mining [Murray et al. 2013]. TensorFlow automatically
distributes machine learning algorithms, expressed as a dataflow
graph of mathematical operations (nodes) and multi-dimensional
arrays or tensors (edges) [Abadi et al. 2016]. Nimbus borrows the
ideas of expressing dependencies using a dataflow graph and using
a controller to place data and schedule tasks, from these systems.
Nimbus provides a richer API to express simulation data such as
particles and grids, and simulation algorithms and solvers.
When the mean number of failures or time between failures is

known, approximations such as Young’s formula [Di et al. 2013;
Young 1974] can be used to compute the optimal number of check-
points. Systems such as Berkeley Lab Checkpoint/Restart (BLCR) [Har-
grove and Duell 2006] and Distributed Multi-threaded Checkpoint-
ing (DMTCP) [Ansel et al. 2009] provide mechanisms and tools
to checkpoint processes and restart processes from checkpoints,
which libraries and applications can use to recover from faults.
However, these systems do not migrate ongoing computations for
load-balancing, and require users to correctly distribute code, syn-
chronize execution, and exchange messages between processes.

3 FOUR LAYER DATA MODEL
Nimbus automatically stitches together distributed, sequential, stand-
alone simulations into a single, larger simulation. It accomplishes
this by using a powerful four-layer data model tailored to the re-
sponsibilities of four different program representations, shown in
Figure 2. These four layers of abstraction provide a clear separation
of concerns for different parts of the system, distributing manage-
ment of the computation in an efficient manner while hiding the
details of parallelism, distribution, and fault recovery from the pro-
grammer.
The geometric layer is designed to provide a simple abstraction

to a simulation author. It is written as a sequential program and
completely hides how data is partitioned and computations are
distributed. The logical layer breaks this geometry into disjoint data
objects and is designed to allow the cloud runtime to quickly analyze
dependencies as well as how to place and replicate data. The physical
layer maps the logical objects to specific memory on workers and is
designed to allow the distributed worker nodes to replicate objects
as well as synchronize them. Finally, the application layer is designed
to allow existing simulation kernels to use their own custom data
structures and data representations without modification.

Figure 2 shows the three software systems that manage the inter-
faces between these layers. Section 4 discusses these in detail, but
the translator is notable because it motivates the need for a 4-layer
data model. The translator performs the critical conversion between
physical objects and the application object formats that a simulation
library expects. The translator is critical for performance because a
single application object often consists of many physical objects. For
example, node 1’s application object in Figure 2 consists of objects 1,
2, and 3. The application expects its object to be a contiguous block
of memory to make memory accesses fast, but the worker needs to
store it as three separate blocks of memory to make memory and
network transfers fast.
The rest of this section explains the four data abstractions in

greater detail. Section 4 describes how Nimbus uses each one and
translates between them.

3.1 Geometric
A simulation declares a variable as a data type over the simulation
domain with a geometric partitioning and a ghost cell width. The
simulation library defines the set of available types, such as floating
point vectors, particles, or scalars. The simulation loop is a linear
sequence of simulation library calls, such as advecting particles
or calculating boundary conditions in projection. Each library call
specifies its data reads and writes by a set of {variable, bounding box}
pairs. The 1D stencil in Figure 2, for example, makes two library
calls, one on the left bounding boxes and one on the right:

parallel {
apply(advect, {vel, lread_bb}, {vel, lwrite_bb});
apply(advect, {vel, rread_bb}, {vel, rwrite_bb});

}

Different simulation variables may have different partitioning. For
example, aMAC grid can use a fine-grained partitioning tomaximize
parallelism while a matrix used during a solve can be partitioned

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Automatically Distributing Eulerian and Hybrid Fluid Simulations in the Cloud • 1:5

more coarsely to reduce the number of iterations needed to con-
verge.

3.2 Logical
Using the specified partitioning, Nimbus’s launcher automatically
translates each variable’s geometric domain into a set of disjoint log-
ical objects. Logical objects present the abstraction of a single large,
shared memory. They expose how a simulation can be parallelized
but hide how the simulation is distributed. Automatically paralleliz-
ing a sequential simulation requires carefully managing the read
and write order of variables to ensure that a lightly loaded worker
does not race ahead and read input data before prior operations on
other nodes have completed.
Logical objects define a read/write order to enforce that the par-

allelized, distributed simulation behaves like the sequential driver
program. Each object has a linear sequence of writes, with any num-
ber of parallel reads between a pair of writes. This allows Nimbus
to analyze data dependencies between calls and enforce execution
order. Figure 2 has four logical objects. Nimbus transforms the two
library calls into:
parallel {

apply(advect, read:{A, B, C}, write:{A, B});
apply(advect, read:{B, C, D}, write:{C, D});

}

As these two advection calls are in parallel, Nimbus knows that
both of them read the same data in B and C and they can execute in
parallel. However, the next time this block executes, each advection
call reads the output of the prior calls and so cannot run until the
prior invocations complete. Nimbus allows in-place operations on
regions that have read-write access permissions. However, parallel
writes to a region are not allowed. In simulation steps where ghost
regions have parallel writes (e.g., particle advection), Nimbus uses a
two stage operation, first creating one temporary object per writer
and then reducing them to the final result.

3.3 Physical
Each logical object has one or more associated physical objects. A
physical object describes actual simulation state stored in the mem-
ory of a specific node. Physical objects therefore define how data
and computations are distributed. Operations on physical objects
describe the simulation’s execution as managed by the cloud run-
time, including simulation operations and data movement. Nimbus’s
controller binds references to logical objects to concrete physical
instances as it decides how to distribute the simulation.
When distributed across two nodes, the 4 logical objects in Fig-

ure 2 map to 6 physical objects, 3 on each node ({1,2,3} and {4,5,6}).
The logical library calls above are translated into these physical
library calls:

apply(advect, read:{1, 2, 3}, write:{1, 2});
apply(advect, read:{4, 5, 6}, write:{5, 6});

and before any future operations that require accessing updated
ghost regions, Nimbus synchronizes ghost objects through explicit
physical copy calls:

network_copy(from:2, to:4);
network_copy(from:5, to:3);

Unlike the logical view of objects, which maintain the abstraction
of a sequential execution of parallel operators, the physical view
describes their actual execution. It presents a level of abstraction
that allows workers to intelligently and correctly manage execution
while remaining independent of the simulation library they are
using.
Physical objects are stored as contiguous blocks of memory, op-

timized for network transfer and minimizing fragmentation. Sec-
tion 4.2 describes how Nimbus copies physical objects to ensure
that, when it executes, each library call reads the result of the most
recent write to an object.

3.4 Application
Nimbus’s runtime needs to pass properly formatted data to a li-
brary’s simulation kernels. When Nimbus invokes a kernel, it does
so as if a partition of the larger simulation is itself a stand-alone,
smaller simulation. Ghost cells and other replicated subsets of the
data are hidden from the library: a single application object typically
consists of many physical objects. The simulation library, however,
often assumes that the application object is a single, contiguous
object in memory. For example, iterating across the application data
for Node 1 in Figure 2 requires accessing object 1, then object 2,
then object 3.

Nimbus’s translator assembles application objects by interleaving
data from physical objects. Nimbus uses the geometry metadata of
the physical objects to interleave them correctly. Simulation library
functions over these application objects can be used unmodified,
without rewriting code to use a different data model. Figure 2 shows
how the two nodes each assemble a contiguous application-level
object out of 3 disjoint physical objects. For example, a PhysBAM
application object can refer to scalar or vector arrays, or particles
stored as an array of linked lists of buckets of particles.

advect(sim.velocity());

As the call above shows, the simulation library executing on
the node is unaware that its application object can be modified
by other threads, cores, or nodes. Instead, when a library routine
completes, Nimbus automatically updates the underlying physical
objects, stitching together the seemingly independent simulations.
The controller automatically copies the physical object that contains
the latest writes to a logical object to other physical objects. Before
Nimbus runs a simulation kernel on application objects, it checks
whether they are up to date with their corresponding physical ob-
jects. If the physical objects have updates, Nimbus merges those
updates into the application object before running the kernel. For
example, when node 2 copies 5 to 3, the next time node 1 runs the
kernel it merges the writes to 3 into the corresponding application
object. Section 4.3 describes how the translator automatically keeps
application layer data objects and their underlying physical objects
consistent.

4 SYSTEM DESIGN
This section presents how Nimbus’s seemingly complex services
can be decomposed into a few simple system components. Nim-
bus translates between geometric, logical, physical, and application
views of the data using the five architecture components shown in

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:6 • O. Mashayekhi et. al.

Driver Program:

Partition prt =
 {2, 1, 1};
Create(velocity, prt);

Op(exec: advect,
 data: velocity,
 read: core/ghost,
 write: ghost);

...
La
un

ch
er

	

Physical	Data	

M
ap
pi
ng
s 	

Controller	

B	A	 C	 D	

2	1	 3	
4	 5	 6	

Logical	Data	
Copy	
Tasks	

Translator	Manager	

app.so	

2	1	 3	

Translator	Manager	

4	 5	 6	

app.so	

PhysicalTask(advect, {1,2,3})

PhysicalTask(advect, {4,5,6})LogicalTask(advect, {A,B,C})
LogicalTask(advect, {B,C,D})

Worker	Nodes	

GeometricTask(advect, left_reg)
GeometricTask(advect, right_reg)

ApplicaDon	
Data	

Fig. 3. Design overview of Nimbus. A driver program defines a lineage of operations over geometric data. The launcher turns the driver program into series of
parallel tasks over logical data objects and sends them to the controller. The controller assigns tasks to worker nodes for execution, mapping logical objects to
specific physical instances. Automatically inserted copy tasks synchronize physical instances when needed. The translator on each computing node assembles
application objects out of physical objects, and the manager controls a thread pool to execute library functions over application objects.

Figure 3. A driver program describes the main simulation loop in the
geometric view. The launcher specifies the logical tasks that each
operate on a subset of the simulation domain, defined by logical
objects. The launcher sends these logical tasks to a controller, which
binds the logical objects to physical objects, computes dependencies,
and sends task commands to worker nodes. The manager running
on a worker node receives task execution commands, schedules
them based on their dependencies, and invokes simulation library
code. The translator on worker nodes assembles the disjoint physical
objects into application objects and keeps both views consistent
with a write-back cache.

4.1 Driver and Launcher
The initialization phase of a driver program specifies the simulation
variables, the geometric domain, and a partitioning configuration.
Nimbus uses this information to generate a set of logical objects,
which decouple data declarations from instantiation, placement, and
layout.
The execution phase of a driver program calls library functions

over partitions (geometric domains), specifying whether each argu-
ment is read-only or read/write. The launcher expands these library
calls into waves of tasks, assigning one task to each partition. Each
task has a read set of the logical objects it reads and a write set of the
logical objects it writes. To compute these sets, the launcher looks
up the logical objects associated with each partition. It relaxes the
sequential order of the driver program by computing data depen-
dencies between tasks and adding a before set to each logical task,
which specifies what tasks must complete before this task can safely
run. The before set is calculated from read and write sets, enforcing
that every task sees the most recent write in the driver’s sequential
order. These before sets define the logical task graph, a DAG which
encodes the simulation’s potential parallelism.

4.2 Controller
The controller takes the task graph it receives from the launcher
and transforms it into a physical task graph, which contains execu-
tion commands that invoke simulation library functions on specific
nodes. Vertices of the physical task graph, like the logical task graph,
have a read set, write set, and before set. The read set and write
set are physical, not logical, objects, however. A physical object is
designed for easy memory management and network transfer: it is a
contiguous block of memory that encodes a variable over a domain.
Each physical object has a version number.

The controller decides how to distribute the parallel logical tasks
from the launcher across worker nodes. To bind logical objects
references to particular physical objects, the controller maintains a
context for each logical task. A context specifies the version number
of each logical object the tasks accesses. The controller computes the
context by assigning, to each logical object, the maximum version
of the contexts of all tasks in the before set. A task that writes to a
logical object increments the version number; this newer version
propagates to tasks that depend on its result.
A physical task is ready to run when every task in its before

set has completed. The controller is responsible for ensuring that
when a physical task runs, every physical object it accesses contains
the correct version specified by the context in the corresponding
logical task. To enforce this invariant, the controller inserts copy
tasks into the physical task graph as needed. For example, if a ghost
region that a task needs to read has been written by a task on
another node, the controller inserts a copy task that transfers the
data over the network, updating the to-be-read region. In a manner
similar to TensorFlow [Abadi et al. 2016], this transforms control
dependencies into data dependencies, which has the benefit that
nodes implicitly synchronize through their data transfers rather
than wait for notifications from the controller. This transformation

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Automatically Distributing Eulerian and Hybrid Fluid Simulations in the Cloud • 1:7

ensures that the controller does not become a bottleneck at moderate
scales, a problem noted by Sparrow [Ousterhout et al. 2013]. Copy
tasks can be local or remote. Local copy tasks copy between two
memory buffers. Remote copy tasks perform a network transfer
using asynchronous I/O. Each computational node has a single I/O
thread that handles completion events and updates the physical
graph.
When deciding how many physical instances to create, the con-

troller trades off between memory footprint and parallelism with a
simple heuristic. It makes multiple instances of ghost regions but
keeps a single instance of any central region. For the uniform parti-
tioning of 2563 simulation in Figure 1, for example, a 3-wide ghost
region has has 9 to 10,092 cells1, while a central region has 195,112
cells. Section 6 describes how the controller decides where to place
physical objects.

4.2.1 Controller Cache. For large, distributed simulations with
hundreds of partitions and millions of logical and physical objects,
computing and sending logical tasks to the controller and mapping
logical tasks to physical tasks can become a bottleneck. Since simula-
tions involve iterative loops with regular access patterns, they have
both regular control flow and data flow. The launcher and controller
therefore cache the tasks they generate, similarly to how execution
templates can improve data analytics scalability [Mashayekhi et al.
2017]. Cache misses only occur the first time a control path executes
(e.g., the first iteration, the first time a frame is written to disk, etc.).
On subsequent executions, rather than compute and send thousands
of tasks, the controller and workers have cached copies of entire task
subgraphs, which can be invoked with a single network message; a
cache hit allows a single message to schedule tens of thousands of
low latency tasks.

4.3 Manager and Translator
The manager receives tasks from the controller and manages three
task queues: blocked (on an incomplete member of the before set),
ready, and running. It maintains a subset of the physical task graph,
consisting of the tasks received from the controller. When a task
completes, the manager removes it from all task before sets; if this
makes a before set of a task empty, that task transitions to the ready
queue. The manager maintains a thread pool equal to the number of
available cores. When a task completes, it takes the next task of the
ready queue and runs it. The ready queue uses two priorities, with
each priority having a FIFO order. Copy tasks have higher priority.
This starts asynchronous network transfers as early as possible,
interleaving communication and computation.
Before the manager executes a simulation library function, it

invokes the translator to generate the appropriate application objects.
If there is already an application object whose data has the correct
versions, the translator returns immediately. If there are portions of
the object that do not contain the most recent write (e.g., a ghost
region written to by another node), it fills into the application object
the contents of the physical object specified in the task.

4.3.1 Translator Cache. To prevent unnecessary copies for data
that is only used locally, and to remove the need for two copies

1 The largest ghost region has 3 × (256/4 − 2 × 3)2 = 10, 092 cells.

of central regions, the translator uses a write-back cache. If a task
writes to an application object, the translator does not immediately
write out the result to the corresponding physical objects. Instead,
it waits until a copy task reads the physical object, at which point it
writes the result out to the physical object before the transfer starts.
The translator frees the backing memory of physical objects that
are out of date with their application object. Because central regions
are only transferred when Nimbus load balances between worker
nodes, there is only one copy of their data. This allows Nimbus to
maintain both the system and application views with only a small
(< 10%) memory overhead.

5 WRITING SIMULATIONS WITH NIMBUS
Writing a simulation in Nimbus has two parts. First, a simulation
library developer writes adapters that allow Nimbus to translate
between the application and system views, and compute tasks that
encapsulate library function calls. This is a one-time effort. Second,
the simulation author writes the driver program that specifies the
variables and computational steps of a specific simulation with
control tasks.

This section explains Nimbus’s API, using level set advection as
a running example. The application simulates multiple frames, and
assumes one iteration per frame for simplicity (PhysBAM dynami-
cally selects a dt inversely proportional to the maximum velocity
in order to maintain the CFL condition). It explains both the APIs
used for adapters as well as a simulation driver.

5.1 Simulation Types (Library Developer)
For Nimbus to translate between the application and system views, a
simulation library developer has to write an adapter for the transla-
tor to convert them. This adapter is a class that holds the underlying
application data. Listing 1 illustrates this API for a scalar array in
PhysBAM (e.g., the signed distance). The Read method reads out of
the application object, translating it into physical objects. The box
parameter specifies a bounding box subset of the application object
to copy. Each element of objects also has a bounding box; the data
copied is the intersection of the application object bounding box, the
physical object bounding box, and box. Write copies from physical
objects into the application object.

5.2 Compute Tasks (Library Developer)
For Nimbus to be able to invoke simulation kernels through tasks,
simulation library developers must write adapters between the Nim-
bus APIs and each kernel. Compute tasks encapsulate calls into
simulation library function. They are responsible for setting any
global variables or configuration that the simulation library expects.
They also fetch the application objects from the translator that the
simulation library function needs. Compute task logic determines
when boundary conditions are used (e.g., compute tasks take a dif-
ferent branch if a cell is a boundary). Listing 2 shows simplified
code for the AdvectLevelset compute task. The compute task reads
velocity and signed_distance over its partition and ghost regions
from neighboring partitions, advects signed_distance with a call to
PhysBAMAdvectLevelset, and writes to signed_distance in its parti-
tion.

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:8 • O. Mashayekhi et. al.

1 class ScalarArray: public AppVar {

2 PhysBAMScalarArray *data ();

3 void Read(DataArray objects, BBox box);

4 void Write(DataArray objects, BBox box);

5 // Internal data members

6 Region bounding_box;

7 PhysBAMScalarArray *data;

8 };

Listing 1. Type definition for a float array application object.

1 class AdvectLevelset: public ComputeTask {

2 void Execute() {

3 // Get application objects to compute on

4 float& dt = GetAppObject("dt");

5 Vec3fArray& vel = GetAppObject("velocity");

6 FloatArray& sdist =

7 GetAppObject("signed_distance");

8 // Call into the PhysBAM library

9 PhysBAMAdvectLevelset(

10 vel.data(), sdist.data(), dt);

11 }

12 };

Listing 2. Compute task for advecting level set calls into PhysBAM.

5.3 Driver Program (Simulation Author)
The driver program has three parts, shown in Listings 3–5. The first
part (Listing 3) defines the parameters of the simulation, including
the geometric domain, partitioning, and ghost cell widths. This
initialization is the one point in the program when a simulation
author must consider how to distribute the simulation. Unlike HPC
simulations, which tend to perform a uniform computation over
data, graphical simulations can have highly varying computations.
For example, particle level set water simulations perform far more
computations on water cells than air cells, and water cells on the
interface are more computationally intensive than those deep within
the volume. As a result, the optimal partitioning depends not only
on the type of simulation, but also its initial conditions, and so this
is best controlled by the simulation author.

The driver program is written as a control task. Control tasks do
not directly invoke simulation functions; instead, they launch other
compute and control tasks. A special control task, Main (Listing 4), is
the entry point for simulation. Main defines the simulation variables.
These variable definitions create logical objects at the controller.
The controller does not create physical objects on worker nodes
until it sends tasks to read or write them. This lazy instantiation
allows the controller to distribute data only after it has a full picture
of task access patterns on data objects.

Main, after it launches tasks to initialize the simulation, launches a
Loop task, which corresponds to the outermost simulation loop. This
task launches compute tasks AdvectLevelset and AdvectVelocity

(Listing 5) to compute the next values of signed_distance and

1 // Define simulation domain

2 BondingBox sim_region = {{0,0,0},{256,256,256}};

3 // Partition the domain along three axes

4 Partitioning partitioning = {2,2,1};

5 // The width of the ghost region

6 int ghost_width = 2;

7 // Center regions with ghost width 0

8 Region center({sim_region, partitioning, 0});

9 // Outer regions includes center and ghost regions

10 Region outer({sim_region, partitioning, ghost_width});

Listing 3. Example initialization of a 2563 simulation domain partitioned in
half along the X and Y axes.

1 // Entry point for a simulation

2 class Main: public ControlTask {

3 void Execute() {

4 CreateData("signed_distance", FloatArray, sim_region,

5 ghost_width, partitioning);

6 CreateData("velocity", Vec3fArray, sim_region,

7 ghost_width, partitioning);

8 // Create more objects and launch Loop task

9 }

10 };

Listing 4. Main task for example particle level set simulation.

1 // A control task to loop until target_frame

2 class Loop: public ControlTask {

3 void Execute() {

4 // Spawn parallel AdvectLevelset tasks

5 LaunchTaskOverAllPartitions(

6 AdvectLevelset,

7 {{"signed_distance", outer},

8 {"velocity", outer}}, // Read outer

9 {{"signed_distance", center}}, // Write center

10 {}); // No task parameter

11 // Spawn other tasks to advect velocity

12 // Spawn next iteration if needed

13 if (parameter.current_frame < parameter.target_frame)

14 LaunchTask(

15 Loop, {}, {} // No read/write data

16 { .current_frame = parameter.current_frame + 1,

17 .target_frame = parameter.target_frame });

18 }

19 };

Listing 5. Loop task for example particle level set simulation.

velocity. Loop task uses parameters current_frame and target_frame
to determine the end of simulation, or launches another Loop control
task.
When launching compute tasks, a control task must specify the

data that the compute task reads and writes, plus optional task spe-
cific parameters. For instance, the Loop task specifies read and write
sets for AdvectLevelset on lines 5 to 10. It does this by specifying

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Automatically Distributing Eulerian and Hybrid Fluid Simulations in the Cloud • 1:9

the variables and the partitioning to use for reading and writing –
an AdvectLevelset task over a partition writes to signed_distance

only over the same partition, by specifying center as the partition to
write, but reads signed_distance and velocity from ghost regions
over neighboring partitions. Nimbus automatically infers write af-
ter read dependencies (e.g., from AdvectLevelset to AdvectVelocity),
and read after write dependencies (from AdvectVelocity to AdvectLevelset
). Based on these dependencies, it automatically inserts the neces-
sary copy tasks and adds them to before sets, enforcing the correct
execution order.

6 FAULT TOLERANCE AND LOAD BALANCING
Production simulations over large grids require hundreds of GB of
memory and thousands of hours of CPU cycles. Simulations running
in the cloud must deal with straggler nodes, arising from oversub-
scribed and shared resources such as worker nodes and network
capacity, and failures such as I/O failures. Private clusters also ex-
hibit these problems when using a large number of nodes for long
periods of time. Disruptions due to failures and slow-down due
to straggler nodes can be very expensive in terms of time and ef-
fort. Nimbus automatically load-balances applications, and recovers
applications from failures (provides fault tolerance).

6.1 Fault Tolerance
The Nimbus controller periodically saves a snapshot of application
state and data, allowing it to restart a simulation in case of a failure.
These checkpoints are sharded over worker nodes and indexed by a
distributed key-value store on top of leveldb [Ghemawat and Dean
2017]. At every checkpoint, Nimbus saves the current task graph,
which includes all control and compute tasks, and system data ob-
jects. Worker nodes periodically send a heartbeat message to the
controller. When the controller does not see heartbeat messages
from a worker, it assumes that the node has failed. When a node fails,
the controller resets the state to the most recent checkpoint, reas-
signs partitions and tasks across the remaining nodes, and resumes
the simulation.

6.2 Load Balancing
Nimbus worker nodes periodically send total time spent in computa-
tion tasks to the controller. A high compute time to total time ratio
indicates that a node may be a straggler – the node takes more time
to complete compute tasks, while other nodes are blocked on it for
updated ghost data. Such imbalance can come from oversubscrip-
tion of shared resources or interference from other applications,
difference in CPU speeds, or even from within the application, for
instance, due to varying amount of fluid. For instance, a particle level
set fluid simulation may have more computation near the interface,
due to additional particles. Most fluid simulations, such as particle
level set, FLIP and APIC have different amounts of fluid in different
partitions, as the simulated fluid evolves over time. This results in
variation across partitions and time. A low compute time to total
time ratio triggers migration – Nimbus moves some partitions from
the straggling worker to neighboring workers. The controller sends
commands to migrate tasks and data to worker nodes, and worker
nodes exchange data accordingly. This is repeated until the ratio of

2 8 16 32 48 64
Number of workers

0

20

40

60

S
p
e
e
d
u
p
 v

s.
 s

in
g
le

 w
o
rk

e
r

63.8x

19.2x
15.2x

8.2x

ghost bw: 0

ghost bw: 1

ghost bw: 2

ghost bw: 3

Fig. 4. Heat-3D automatically distributed under Nimbus with different
ghost widths. Nimbus scales almost linearly if there is no data exchange
among the workers (ghost width 0). However, limited networking through-
put in the cloud bounds the speedup gains when there is data exchange
among workers. Wider ghost regions increase the networking overhead and
lower the gains.

compute time to total time falls within a threshold. If a worker is
particularly slow, then all the tasks from that node may be moved
to neighboring nodes.

7 EVALUATION
The goal of Nimbus is to automatically distribute existing sequential
fluid simulation libraries to run in the cloud. To evaluate whether it
achieves these goals, we ported three graphical simulations to use
Nimbus: a 3D heat distribution simulation with a Jacobi iterative
solver, a particle level set water simulation, and a particle level set
smoke simulation. This section presents results on how many lines
of code it took to port them, the performance improvements of the
distributed versions, and how well the distributed versions scale. It
evaluates Nimbus’s robustness to stragglers and node failures.

Unless otherwise stated, all experiments use Amazon EC2 compute-
optimized instances since they are the most cost-efficient option
for compute-bound workloads. Worker nodes are c3.2xlarge in-
stances with 8 virtual cores and 15GB of RAM. All nodes are allo-
cated within a single placement group and so have full bisection
bandwidth. The Nimbus code repository, including experiments, is
publicly available at https://github.com/omidm/nimbus.

7.1 Heat Distribution
We use a 3D heat distribution simulation to measure the overhead
that Nimbus introduces independently of any scalability bottlenecks
that a simulation method introduces. The 3D heat distribution sim-
ulation uses a Jacobi iterative solver and is a common benchmark
in prior work [Peraza et al. 2013; Rivera and Tseng 2000; Tang et al.
2011; Williams et al. 2006]. Moreover, when the simulation’s ghost
width is set to 0, the simulation is perfectly parallelizable (there is no
shared state between partitions), and the simulation scales linearly.
We took an existing, open-source sequential C++ implementa-

tion [Kamil 2017] and ported it to Nimbus by writing 118 lines of
code for the translations between physical and application objects
and a 94 line driver program. These 212 lines of code allow Nimbus

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:10 • O. Mashayekhi et. al.

2 8 16 32 48 64
Number of workers

0

10

20

30

S
p
e
e
d
u
p
 v

s.
 s

in
g
le

 w
o
rk

e
r

19.2x

11.1x

1.0x

w/ translator and controller cache

w/ only controller cache

w/ only translator cache

no caching

Fig. 5. Effect of translator and controller caches on scalability of the Heat-
3D application under Nimbus with a ghost width of 1. The translator and
controller caches are crucial for Nimbus’s scalability. Without the translator
cache the applications run almost two times slower. Without the controller
cache, the controller becomes a bottleneck at even moderate scales and
limits the performance gains from scaling.

to automatically stitch together many distributed sub-simulations
into a single, large simulation.

7.1.1 Scalability. Figure 4 shows the speedup gains from using
Nimbus to distribute the 3D heat distribution simulation over 2–64
workers. When the ghost width is 0, each sub-simulation runs inde-
pendently. With 64 workers, the simulation runs 63.8x times faster
than on a single worker: Nimbus’s overhead is < 0.4%. Increasing
the ghost width introduces data exchanges between sub-simulations.
Because c3.2x large instances have only 1Gbps links, these data
exchanges become a bottleneck; the simulation method limits scala-
bility. Using a ghost width of 3 cells, 64 worker nodes speed up the
simulation by 8.2x. We verified that communication is the bottle-
neck by using a distributed logging mechanism similar to block-time
analysis [Ousterhout et al. 2015].

7.1.2 Translator and Controller Cache. Nimbus’s translator and
controller caches are designed to address performance bottlenecks
that graphical simulations introduce but traditional cloud systems do
not encounter. To quantify the performance benefits of the translator
and controller caches, we ran simulations with a ghost cell size of 1,
as this is the fastest setting that exercises the translator cache.
Figure 5 shows the results. The translator cache improves per-

formance by 72%. Without a translator cache, Nimbus is forced to
translate central regions back and forth between the physical and
application layers after each access. These large memory copies take
almost as long as the computations. The controller cache allows
Nimbus to scale out to many workers, such that performance is
limited by simulation computation and communication. Without a
controller cache, the controller becomes a bottleneck as the number
of workers increases: while 8 workers see a 4x speedup, adding
more workers adds to the control plane load such that 64 workers
are no faster than 1.

7.2 Particle Level Set Simulations
To evaluate how well Nimbus can distribute complex, production-
quality simulations, we ported two PhysBAM [Dubey et al. 2011]

(a) 1283 , w/o Nimbus: 172 minutes

(b) 2563 , w/ Nimbus: 268 minutes, w/o Nimbus: >48 hours

Fig. 6. Particle level set water simulations with and without Nimbus. The
top simulation has 1283 cells, runs on a single-core and takes 172 minutes
to simulate 30 frames. The bottom simulation uses Nimbus to automatically
distribute this single-core simulation over 8 nodes (64 cores) in Amazon’s
EC2, simulating with greater detail: 30 frames of a 2563 cell simulation takes
268 minutes. Without Nimbus the 2563 cell simulation takes more than two
days. Running the 1283 simulation in Nimbus takes only 43 minutes.

fluid simulations: water and smoke. We use PhysBAM for two rea-
sons. First, it is open source, so one can write translators for its data
structures and results can be easily reproduced. Second, PhysBAM
is widely used in practice; movie studios such as ILM and Pixar use
PhysBAM in production films, and its developers have received two
Academy Awards for contributions to special effects [Academy of
Motion Picture Arts and Sciences 2017].

We focus on the water simulation because is a canonical example,
requires an implicit solve and employs methods that are required
for other fluid simulations such as smoke and fire. We discuss the
smoke simulation in Section 7.3. The water simulation has more
than 40 different variables in the form of scalar/vector fields as
well as particle buckets and 26 different library kernels. The main
loop has an outer loop for advecting velocity and particles and an
inner loop for solving the Navier-Stokes equations with an iterative
pre-conjugate gradient algorithm [Enright et al. 2002b]. PhysBAM
supports both single-threaded and multi-threaded execution; we
used its single-threaded implementations because using Nimbus

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Automatically Distributing Eulerian and Hybrid Fluid Simulations in the Cloud • 1:11

(a) 1283 , w/o Nimbus: 94 minutes

(b) 2563 , w/ Nimbus: 132 minutes, w/o Nimbus: >30 hours

Fig. 7. Smoke simulations with and without Nimbus. The top simulation
has 1283 cells, runs on a single-core and takes 94 minutes to simulate 70
frames. The bottom simulation uses Nimbus to automatically distribute this
single-core simulation over 8 nodes (64 cores) in Amazon’s EC2, simulating
with greater detail: 70 frames of a 2563 cell simulation take 132 minutes.
Without Nimbus the 2563 cell simulation takes more than a day. Running
the 1283 simulation in Nimbus takes only 28 minutes.

to manage threads across cores leads to better load balancing, as
Nimbus can dynamically migrate load across cores.

Figure 6 shows the result of running a water simulation with and
without Nimbus. Simulating 30 frames of a serial, single-core im-
plementation takes 172 minutes for 1283 cells, 335 minutes for 1523
cells, and over 48 hours for 2563 cells. Distributing the simulation
to run on 8 nodes (64 cores), 2563 cells takes 268 minutes, slightly
faster than the single-core 1523 simulation and over ten times faster
than the single-core 2563 simulation. Using Nimbus makes much
higher-detail simulations faster.
Porting the PhysBAM library required writing translators for

three data types: face arrays, scalar arrays, and particles. The trans-
lators are less than 1500 lines of C++ code. This is a one time cost,
and other simulations (e.g. smoke) can reuse the translators. The
driver program, that launches control tasks, is 620 lines of code.

0 20 40 60
Time (minute)

0

200

400

It
e
ra

ti
o
n

 N
u

m
b

e
r Enabled

Disabled

rewind from checkpoint

checkpoint

checkpoint
one node fails

one node straggles

Fig. 8. Running a 2563-cell PhysBAM water simulation in a cluster of 8
Nimbus nodes in two cases: load balancing and fault tolerance enabled and
disabled. Nimbus reacts to the straggling node by rebalancing the load and
rewinds from the latest checkpoint upon failure. Without these features the
progress speed is bound by the speed of the straggler and any fault halts
the simulation.

7.3 Nimbus in Practice
To evaluate the difficulty of writing simulations in Nimbus, we
asked an undergraduate summer intern to port a PhysBAM smoke
simulation to Nimbus. Writing the driver took less than a month for
the student, who had no prior knowledge in graphics or simulation
methods. The majority of the time was spent in understanding
the original code and determining the required tasks. The water
simulation’s translations were directly reusable. Figure 7 shows
the results of this effort, comparing a 1283 smoke simulation run
on a single core and an automatically distributed 2563 simulation
run on 64 cores; the 2563 simulation has much greater detail but
runs nearly as fast. We expect that developers who understand the
simulation methods well will find porting tasks to Nimbus’s API
fairly straight-forward.

7.4 Load Balancing and Fault Tolerance
A key feature of Nimbus is that it automatically monitors execution
progress, reacting to stragglers, balancing load, and recovering from
failures. To evaluate these capabilities reproducibly, we constructed
controlled conditions that would trigger these cases.

Figure 8 shows two different scenarios for running a 2563-cell wa-
ter simulation over a cluster of 8 nodes, one in which load balancing
and fault tolerance are enabled and one in which they are disabled
(this mimics the more traditional approach of static parallelization
as used in PhysBAM’s MPI support). We configured Nimbus to au-
tomatically create checkpoints every 30 minutes, as this imposed a
very small overhead yet even for larger simulations it is significantly
more frequent than the failure rates we have observed, which are
most commonly due to disk I/O failures.

After 10 minutes, we launched CPU-bound background processes
on one node to cause it to perform poorly and become a strag-
gler. Without load balancing, all of the other workers wait for the
straggler, which limits the speed of the simulation. With load balanc-
ing enabled, the Nimbus controller quickly migrates computations
and the simulation slows only by the degree of lost computational
resources.
After 35 minutes, we forced one node to fail and lose all of its

in-memory state. With automatic checkpointing enabled, Nimbus

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:12 • O. Mashayekhi et. al.

0 20 40
Iteration time (s)

MPI

Nimbus

12.4 19.3 31.7

12.2 19.4 4.9 36.5

Computation Communication Controller

Fig. 9. Running a 10243-cell water simulation distributed over 64 nods (512
cores) under MPI and Nimbus. The data exchange almost exactly matches
in both systems. Nimbus’s controller is dynamic to be able to react to the
straggles and failures; this results in a 15% overhead compared to the MPI
implementation with statically compiled control plane, that does not provide
load balancing or fault tolerance.

successfully rewinds back to a snapshot and resumes computation
with the remaining available resources. This is much faster than the
current common approach of manually relaunching the simulation
when someone detects it has failed.

7.5 Comparison with Other Methods
To evaluate the overhead of Nimbus’s centralized controller, which
provides fault tolerance and load balancing, we compare Nimbus
with the common approach to distribute high-performance graphi-
cal simulations, MPI [Snir 1998]. Distributing a simulation with MPI
requires a complete rewrite of every kernel, as they must integrate
the necessary data communication with their computational steps.
PhysBAM has hand-tuned MPI implementations for a subset of its
kernels. The resulting statically compiled control flow has very little
overhead, but is unable to respond to slow nodes, load imbalance, or
failures. If a node crashes or is slow, the programmer must manually
recover and restart the simulation. In contrast, Nimbus automati-
cally handles distribution, schedules around poor performance, and
recovers from failures.
For medium to large simulations (e.g., 2563 – 5123), Nimbus’s

performance is within 3-10% of an MPI implementation. The perfor-
mance overhead comes from the centralized controller, which must
send tasks to workers. The controller cache causes this overhead to
grow linearly with the number of workers.

One final question for Nimbus’s scalability is how large a simula-
tion it can handle. Figure 9 shows the performance of a 10243-cell
water simulation distributed over 512 cores (64 nodes), with each
core having 1.5GB of simulation state. To the best of the knowl-
edge of the PhysBAM developers, this is the biggest simulation that
PhysBAM has ever been used for; the resulting tiny dt values and
time for the implicit solve make it impractically slow. Even at such
large scales, a single-threaded simulation distributed with Nimbus
performs within 15% of a hand-tuned MPI implementation.

8 DISCUSSION AND FUTURE WORK
This paper presents Nimbus, a system that distributes grid-based
fluid simulations. Nimbus takes a single-threaded simulation and
automatically distributes it across many nodes and cores. It achieves
this by distinguishing between the application view of data, which

is contiguous, and the system view, which subdivides data objects
into units corresponding to their data read, write, and transfer re-
quirements. Each simulation node executes as if it is a stand-alone
simulation; Nimbus automatically stitches these many smaller simu-
lations into a single, large simulation. Furthermore, it automatically
load balances simulations and recovers from failures.
Using PhysBAM particle level set fluid simulations, we demon-

strate that Nimbus can run higher detail simulations faster, distribute
simulations on up to 512 cores and run enormous simulations (10243
cells). Additionally, Nimbus automatically manages the distributed
execution, balancing load across nodes and recovering from failures.
Nimbus is designed to support simulations with an underlying

Eulerian structure; this allows it to efficiently map between applica-
tion and system views of the data. While it can also support hybrid
schemes (e.g., particle level set, FLIP, APIC), it is a poor match for
purely Lagrangian or mesh-based simulations.

Nimbus currently only supports static data resolutions. Adaptive
methods provided by data structures such as adaptivemeshes [Arney
and Flaherty 1990] or hierarchical structures such as VDB [Museth
et al. 2013] is future work. Supporting these requires that a simu-
lation library can dynamically change and reconfigure the set of
logical objects in an efficient way. The multiple resolutions provided
by hierarchical data structures can provide valuable information
on data placement and load balancing: dividing across nodes on
sparse boundaries reduces data movement. Chimera grids [English
et al. 2013] are also an area of future work; efficiently supporting
them requires abstractions to minimize the data transfer required
to synchronize the boundaries of overlapping grids.

Increasingly distributing an incompressible flow simulation causes
the solver to consume an increasing portion of iteration time. This
suggests that increasingly parallel simulations may benefit from
new solvers, or centralizing the solver on a single node.
We believe that as simulations continue to be a key aspect of

computer graphics and large-scale distributed computing resources
continue to become more accessible, Nimbus’s approach of auto-
distributing simulation codes will grow increasingly important.

ACKNOWLEDGEMENTS
First and foremost, we would like to thank Ron Fedkiw and his re-
search group, especially Saket Pakhar, Rahul Sheth, and David Hyde.
Over the course of developing Nimbus, they have been tremendously
helpful and always available to answer questions about simulation
methods and PhysBAM. We would also like to thank Pat Hanrahan
and Intel for inviting us to be part of the Intel ISTC-VC, introducing
us to the unique systems challenges computer graphics faces.

This work was funded by the National Science Foundation (CSR
grant #1409847) and conducted in conjunction with the Intel Science
and Technology Center - Visual Computing. The experiments were
made possible by a generous grant from the Amazon Web Services
Educate program.

REFERENCES
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath
Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit
Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-scale Machine Learning.

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Automatically Distributing Eulerian and Hybrid Fluid Simulations in the Cloud • 1:13

In Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation (OSDI’16). USENIX Association, 265–283. http://dl.acm.org/citation.
cfm?id=3026877.3026899

Academy of Motion Picture Arts and Sciences. 2017. Oscar Sci-Tech Awards. (2017).
http://www.oscars.org/sci-tech

Jérémie Allard and Bruno Raffin. 2005. A Shader-based Parallel Rendering Framework.
In VIS 05. IEEE Visualization, 2005. IEEE, 127–134. https://doi.org/10.1109/VISUAL.
2005.1532787

Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica. 2013. Effec-
tive Straggler Mitigation: Attack of the Clones. In Proceedings of the 10th USENIX
Conference on Networked Systems Design and Implementation (NSDI’13). USENIX
Association, 185–198. http://dl.acm.org/citation.cfm?id=2482626.2482645

Ganesh Ananthanarayanan, Srikanth Kandula, Albert Greenberg, Ion Stoica, Yi Lu,
Bikas Saha, and Edward Harris. 2010. Reining in the Outliers in Map-reduce Clusters
Using Mantri. In Proceedings of the 9th USENIX Conference on Operating Systems
Design and Implementation (OSDI’10). USENIX Association, 265–278. http://dl.acm.
org/citation.cfm?id=1924943.1924962

Jason Ansel, Kapil Arya, and Gene Cooperman. 2009. DMTCP: Transparent Check-
pointing for Cluster Computations and the Desktop. In Proceedings of the 2009
IEEE International Symposium on Parallel&Distributed Processing (IPDPS’09). IEEE
Computer Society, 1–12. https://doi.org/10.1109/IPDPS.2009.5161063

David C. Arney and Joseph E. Flaherty. 1990. An Adaptive Mesh-moving and Local
Refinement Method for Time-dependent Partial Differential Equations. ACM Trans.
Math. Softw. 16, 1 (March 1990), 48–71. https://doi.org/10.1145/77626.77631

Michael Edward Bauer. 2014. Legion: Programming Distributed Heterogeneous Architec-
tures with Logical Regions. Ph.D. Dissertation.

Gilbert Louis Bernstein, Chinmayee Shah, Crystal Lemire, Zachary Devito, Matthew
Fisher, Philip Levis, and Pat Hanrahan. 2016. Ebb: A DSL for Physical Simulation on
CPUs and GPUs. ACM Transactions on Graphics (TOG) 35, 2, Article 21 (May 2016),
12 pages. https://doi.org/10.1145/2892632

Umit V Catalyurek, Erik G Boman, Karen D Devine, Doruk Bozdag, Robert Heaphy, and
Lee Ann Riesen. 2007. Hypergraph-based Dynamic Load Balancing for Adaptive
Scientific Computations. In Parallel and Distributed Processing Symposium, 2007.
IPDPS 2007. IEEE International. 1–11. https://doi.org/10.1109/IPDPS.2007.370258

Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kiel-
stra, Kemal Ebcioglu, Christoph Von Praun, and Vivek Sarkar. 2005. X10: An
Object-oriented Approach to Non-uniform Cluster Computing. In Acm Sigplan
Notices, Vol. 40. ACM, 519–538.

NVIDIA Corporation. 2017. CUDA Programming Guide. (2017). https://docs.nvidia.
com/cuda/cuda-c-programming-guide/

JeffreyDean, Greg Corrado, RajatMonga, Kai Chen,Matthieu Devin,MarkMao, Andrew
Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. 2012. Large scale distributed deep
networks. In Advances in neural information processing systems. 1223–1231.

Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing on
Large Clusters. Commun. ACM 51, 1 (2008), 107–113.

Steven J Deitz, Bradford L Chamberlain, and Lawrence Snyder. 2004. Abstractions
for Dynamic Data Distribution. In High-Level Parallel Programming Models and
Supportive Environments, 2004. Proceedings. Ninth International Workshop on. IEEE,
42–51.

Tyler Denniston, Shoaib Kamil, and Saman Amarasinghe. 2016. Distributed Halide.
In Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP’16). ACM, Article 5, 12 pages. https://doi.org/10.1145/
2851141.2851157

Mathieu Desbrun and Marie-Paule Gascuel. 1996. Smoothed Particles: A New Paradigm
for Animating Highly Deformable Bodies. In Computer Animation and Simulation’96.
Springer, 61–76.

Zachary DeVito, Niels Joubert, Francisco Palacios, Stephen Oakley, Montserrat Medina,
Mike Barrientos, Erich Elsen, Frank Ham, Alex Aiken, Karthik Duraisamy, et al. 2011.
Liszt: A Domain Specific Language for Building Portable Mesh-based PDE Solvers.
In Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis (SC’11). ACM, 9.

Sheng Di, Yves Robert, Frédéric Vivien, Derrick Kondo, Cho-Li Wang, and Franck
Cappello. 2013. Optimization of Cloud Task Processing with Checkpoint-Restart
Mechanism. In High Performance Computing, Networking, Storage and Analysis (SC),
2013 International Conference for. IEEE, 1–12.

James Dinan, D. Brian Larkins, P. Sadayappan, Sriram Krishnamoorthy, and Jarek
Nieplocha. 2009. Scalable Work Stealing. In Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis (SC’09). ACM, Article 53,
11 pages. https://doi.org/10.1145/1654059.1654113

Jens Dittrich and Jorge-Arnulfo Quiané-Ruiz. 2012. Efficient Big Data Processing in
Hadoop MapReduce. Proceedings of the VLDB Endowment 5, 12 (2012), 2014–2015.

Pradeep Dubey, Pat Hanrahan, Ronald Fedkiw, Michael Lentine, and Craig Schroeder.
2011. PhysBAM: Physically Based Simulation. In ACM SIGGRAPH 2011 Courses.
ACM, 10.

R Elliot English, Linhai Qiu, Yue Yu, and Ronald Fedkiw. 2013. Chimera Grids for Water
Simulation. In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on

Computer Animation. ACM, 85–94.
Douglas Enright, Ronald Fedkiw, Joel Ferziger, and IanMitchell. 2002a. AHybrid Particle

Level SetMethod for Improved Interface Capturing. Journal of Computational physics
183, 1 (2002), 83–116.

Douglas Enright, Stephen Marschner, and Ronald Fedkiw. 2002b. Animation and
Rendering of Complex Water Surfaces. In Proceedings of the 29th Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH’02). ACM, 736–744.
https://doi.org/10.1145/566570.566645

Kayvon Fatahalian, Daniel Reiter Horn, Timothy J Knight, Larkhoon Leem, Mike
Houston, Ji Young Park, Mattan Erez, Manman Ren, Alex Aiken, William J Dally,
et al. 2006. Sequoia: Programming the Memory Hierarchy. In Proceedings of the 2006
ACM/IEEE Conference on Supercomputing. ACM, 83.

J Davison de St Germain, John McCorquodale, Steven G Parker, and Christopher R
Johnson. 2000. Uintah: A Massively Parallel Problem Solving Environment. In
High-Performance Distributed Computing, 2000. Proceedings. The Ninth International
Symposium on. IEEE, 33–41.

Sanjay Ghemawat and Jeff Dean. 2017. LevelDB. (2017). https://github.com/google/
leveldb

Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. PowerGraph: Distributed Graph-parallel Computation on Natural Graphs.
In Proceedings of the 10th USENIX Conference on Operating Systems Design and
Implementation (OSDI’12). USENIX Association, 17–30. http://dl.acm.org/citation.
cfm?id=2387880.2387883

Nolan Goodnight. 2007. CUDA/OpenGL Fluid Simulation. NVIDIA Corporation (2007).
Pat Hanrahan and Jim Lawson. 1990. A Language for Shading and Lighting Calculations.

In ACM SIGGRAPH Computer Graphics, Vol. 24. ACM, 289–298.
Paul H Hargrove and Jason C Duell. 2006. Berkeley Lab Checkpoint/Restart (BLCR) for

Linux Clusters. In Journal of Physics: Conference Series, Vol. 46. IOP Publishing, 494.
Francis H Harlow. 1962. The Particle-in-cell Method for Numerical Solution of Problems

in Fluid Dynamics. Technical Report. Los Alamos Scientific Lab., N. Mex.
Christopher J Hughes, Radek Grzeszczuk, Eftychios Sifakis, Daehyun Kim, Sanjeev

Kumar, Andrew P Selle, Jatin Chhugani, Matthew Holliman, and Yen-Kuang Chen.
2007. Physical Simulation for Animation and Visual Effects: Parallelization and
Characterization for Chip Multiprocessors. In ACM SIGARCH Computer Architecture
News, Vol. 35. ACM, 220–231.

Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean Ahern, Peter D Kirchner,
and James T Klosowski. 2002. Chromium: A Stream-Processing Framework for
Interactive Rendering on Clusters. ACM Transactions on Graphics (TOG) 21, 3 (2002),
693–702.

Emmanuel Jeannot, EstebanMeneses, GuillaumeMercier, François Tessier, and Gengbin
Zheng. 2013. Communication and Topology-aware Load Balancing in Charm++with
TreeMatch. In Cluster Computing (CLUSTER), 2013 IEEE International Conference on.
1–8. https://doi.org/10.1109/CLUSTER.2013.6702666

Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin.
2015. The Affine Particle-in-cell Method. ACM Transactions on Graphics (TOG) 34, 4
(2015), 51.

Laxmikant V Kale and Sanjeev Krishnan. 1993. CHARM++: A Portable Concurrent Object
Oriented System Based on C++. Vol. 28. ACM.

Shoaib Kamil. 2017. StencilProbe: A Microbenchmark for Stencil Applications. (2017).
http://people.csail.mit.edu/skamil/projects/stencilprobe/

George Karypis and Vipin Kumar. 1996. Parallel Multilevel K-way Partitioning Scheme
for Irregular Graphs. In Proceedings of the 1996 ACM/IEEE Conference on Supercom-
puting (SC’96). IEEE Computer Society, Article 35. https://doi.org/10.1145/369028.
369103

Fredrik Kjolstad, Shoaib Kamil, Jonathan Ragan-Kelley, David IW Levin, Shinjiro Sueda,
Desai Chen, Etienne Vouga, Danny M Kaufman, Gurtej Kanwar, Wojciech Matusik,
et al. 2016. Simit: A Language for Physical Simulation. ACM Transactions on Graphics
(TOG) 35, 2 (2016), 20.

Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. 2009. Convolutional
Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Repre-
sentations. In Proceedings of the 26th Annual International Conference on Machine
Learning (ICML’09). ACM, 609–616. https://doi.org/10.1145/1553374.1553453

Jonathan Lifflander, Sriram Krishnamoorthy, and Laxmikant V. Kale. 2012. Work
Stealing and Persistence-based Load Balancers for Iterative Overdecomposed Ap-
plications. In Proceedings of the 21st International Symposium on High-Performance
Parallel and Distributed Computing (HPDC’12). ACM, 137–148. https://doi.org/10.
1145/2287076.2287103

Frank Losasso, Frédéric Gibou, and Ron Fedkiw. 2004. Simulating Water and Smoke
with an Octree Data Structure. In ACM Transactions on Graphics (TOG), Vol. 23.
ACM, 457–462.

David Luebke. 2008. CUDA: Scalable Parallel Programming for High-performance
Scientific Computing. In 2008 5th IEEE International Symposium on Biomedical
Imaging: From Nano to Macro. IEEE, 836–838.

Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn, Naty
Leiser, and Grzegorz Czajkowski. 2010. Pregel: A System for Large-scale Graph
Processing. In Proceedings of the 2010 ACM SIGMOD International Conference on

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:14 • O. Mashayekhi et. al.

Management of data. ACM, 135–146.
Omid Mashayekhi, Hang Qu, Chnimayee Shah, and Philip Levis. 2017. Execution Tem-

plates: Caching Control Plane Decisions for Strong Scaling of Data Analytics. In 2017
USENIX Annual Technical Conference (ATC’17). USENIX Association, 513–526. https:
//www.usenix.org/conference/atc17/technical-sessions/presentation/mashayekhi

Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and
Martín Abadi. 2013. Naiad: A Timely Dataflow System. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles (SOSP’13). ACM, 439–455.

Ken Museth, Jeff Lait, John Johanson, Jeff Budsberg, Ron Henderson, Mihai Alden,
Peter Cucka, David Hill, and Andrew Pearce. 2013. OpenVDB: An Open-source
Data Structure and Toolkit for High-resolution Volumes. In ACM SIGGRAPH 2013
Courses. ACM, 19.

Lionel M. Ni and Kai Hwang. 1985. Optimal Load Balancing in a Multiple Processor
System with Many Job Classes. IEEE Trans. Softw. Eng. 11, 5 (May 1985), 491–496.
https://doi.org/10.1109/TSE.1985.232489

Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, Byung-Gon Chun, and
VMware ICSI. 2015. Making Sense of Performance in Data Analytics Frameworks.
In Proceedings of the 12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI’15). 293–307.

Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. 2013. Sparrow: Dis-
tributed, Low Latency Scheduling. In Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles (SOSP’13). ACM, 69–84.

Saket Patkar, Mridul Aanjaneya, Dmitriy Karpman, and Ronald Fedkiw. 2013. A Hybrid
Lagrangian-Eulerian Formulation for Bubble Generation and Dynamics. In Proceed-
ings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
ACM, 105–114.

Joshua Peraza, Ananta Tiwari, Michael Laurenzano, Laura Carrington, William AWard,
and Roy Campbell. 2013. Understanding the Performance of Stencil Computations on
Intel’s Xeon Phi. In Cluster Computing (CLUSTER), 2013 IEEE International Conference
on. IEEE, 1–5.

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand,
and Saman Amarasinghe. 2013. Halide: A Language and Compiler for Optimizing
Parallelism, Locality, and Recomputation in Image Processing Pipelines. ACM
SIGPLAN Notices 48, 6 (2013), 519–530.

Jon Reisch, Stephen Marshall, Magnus Wrenninge, Tolga Göktekin, Michael Hall,
Michael O’Brien, Jason Johnston, Jordan Rempel, and Andy Lin. 2016. Simulat-
ing Rivers in the Good Dinosaur. In ACM SIGGRAPH 2016 Talks. ACM, 40.

Gabriel Rivera and Chau-Wen Tseng. 2000. Tiling Optimizations for 3D Scientific
Computations. In Supercomputing, ACM/IEEE 2000 Conference. IEEE, 32–32.

Elliott Slaughter, Wonchan Lee, Sean Treichler, Michael Bauer, and Alex Aiken. 2015.
Regent: A High-productivity Programming Language for HPC with Logical Regions.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC’15). ACM, 81.

Marc Snir. 1998. MPI–The Complete Reference: The MPI Core. Vol. 1. MIT press.
Jos Stam. 1999. Stable Fluids. In Proceedings of the 26th Annual Conference on Computer

Graphics and Interactive Techniques. ACM Press/Addison-Wesley Publishing Co.,
121–128.

Matt Stanton, Ben Humberston, Brandon Kase, James F O’Brien, Kayvon Fatahalian, and
Adrien Treuille. 2014. Self-refining Games Using Player Analytics. ACM Transactions
on Graphics (TOG) 33, 4 (2014), 73.

Yuan Tang, Rezaul Alam Chowdhury, Bradley C Kuszmaul, Chi-Keung Luk, and
Charles E Leiserson. 2011. The Pochoir Stencil Compiler. In Proceedings of the
Twenty-third Annual ACM Symposium on Parallelism in Algorithms and Architectures.
ACM, 117–128.

The Khronos Group. 2017a. OpenCL. (2017). https://www.khronos.org/opencl/
The Khronos Group. 2017b. OpenGL. (2017). https://www.opengl.org/
Kashi Venkatesh Vishwanath and Nachiappan Nagappan. 2010. Characterizing Cloud

Computing Hardware Reliability. In Proceedings of the 1st ACM Symposium on Cloud
Computing (SoCC’10). ACM, 193–204. https://doi.org/10.1145/1807128.1807161

William WWhite. 2012. River Running Through It. (2012). https://www.cs.siue.edu/
~wwhite/SIGGRAPH/SIGGRAPH2012Itinerary.pdf

Samuel Williams, John Shalf, Leonid Oliker, Shoaib Kamil, Parry Husbands, and Kather-
ine Yelick. 2006. The Potential of the Cell Processor for Scientific Computing. In
Proceedings of the 3rd Conference on Computing Frontiers. ACM, 9–20.

JohnW Young. 1974. A First Order Approximation to the Optimum Checkpoint Interval.
Commun. ACM 17, 9 (1974), 530–531.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Mur-
phy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. 2012. Resilient
Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster Comput-
ing. In Proceedings of the 9th USENIX Conference on Networked Systems Design and
Implementation (NSDI’16). USENIX Association, 2–2.

Gengbin Zheng, Abhinav Bhatelé, Esteban Meneses, and Laxmikant V. Kalé. 2011.
Periodic Hierarchical Load Balancing for Large Supercomputers. Int. J. High Perform.
Comput. Appl. 25, 4 (Nov. 2011), 371–385. https://doi.org/10.1177/1094342010394383

Yongning Zhu and Robert Bridson. 2005. Animating Sand as a Fluid. InACMTransactions
on Graphics (TOG), Vol. 24. ACM, 965–972.

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1. Publication date: January 2018.

